
Degree–Optimal Deterministic Routing for P2P Systems

Gennaro Cordasco∗ Luisa Gargano∗ Mikael Hammar† Vittorio Scarano∗

Abstract

We propose routing schemes that optimize the average
number of hops for lookup requests in Peer–to–Peer (P2P)
systems without adding any overhead to the system. Our
work is inspired by the recently introduced variation of
greedy routing, called neighbor–of–neighbor (NoN), which
allows to get optimal average path length with respect to
the degree. Our proposal has the advantage of first “limit-
ing” and then “eliminating” the use of randomization. As a
consequence, the NoN technique can be implemented with
our schemes without adding any overhead. Analyzed net-
works include several popular topologies: Chord, Hyper-
cube based networks, Symphony, Skip-Graphs. Theoretical
results and extensive simulations show that the proposed
simplifications (while maintaining the original node degree)
do not increase the average path length of the networks,
which is often improved in practice. The improvement is ob-
tained with no harm to the operational efficiency (e.g. sta-
bility, ease of programming, scalability, fault–tolerance) of
the considered systems.

1 Introduction
Peer–to–Peer file sharing applications quickly became

very popular in the recent years. Several of the recently
proposed systems are completely distributed and use a scal-
able Distributed Hash Table (DHT) as a sublayer. A DHT is
a self–organizing overlay network that allows to add, delete,
and look up hash tables. Several proposals have been made
recently of systems where hosts configure themselves into a
structured network such that lookups require a small num-
ber of hops.
RELATED WORK. The greedy routing approach, in which
the message is routed through the neighbor which is nearest
to the target, has been used in most of the proposed P2P net-
works. These include [9, 3, 10, 2, 7]. Several reasons make

∗Dipartimento di Informatica ed Applicazioni, Univer-
sità di Salerno, 84081 Baronissi (Salerno), Italy. E-mail:
{cordasco,lg,vitsca}@dia.unisa.it. The work of these
authors was partially supported by Italian FIRB project WebMinds.

†Research & Development, Apptus Technologies AB, IDEON, 223 70
Lund, Sweden, E-mail: Mikael.Hammar@apptus.com.

greedy a popular strategy. In particular, one of the main ad-
vantages is that greedy routing is very simple to implement
and has some “implicit” fault-tolerance capability. It was
however noticed that greedy routing usually produces paths
of length larger than what would be required in a network
of the given node degree. As an example, some popular
topologies like Chord have degree O(log n) and the greedy
routing produces an average path length O(log n) whereas
the lower bound is Ω(log n/log log n).

The use of randomization allowed to exhibit networks
with optimal average path length [5]. Recently, construc-
tions based on de Bruijn graphs [4] exhibited optimal trade–
offs between degree and latency with deterministic routing;
these algorithms are not greedy and present some other dis-
advantages as discussed in [8].

Recently a novel approach for routing in DHTs which
improves on greedy routing has been proposed [8]. This
approach, called NoN (Neighbors–of–Neighbors) or 1-
lookahead routing, substantially consists in making the
greedy choice by looking not only at the neighbors of a
node but at all the nodes at distance at most two from the
node itself. The NoN approach together with the use of ran-
domization in establishing the neighbors of the nodes which
are present in the network, can optimally reduce the latency
in several well known topologies [8].
OUR RESULTS. We show how to retain the improvements
given by the NoN routing over randomized networks, while
eliminating the drawback in system overhead implied by
this technique.

It is well known that an average path length
O (log n/log log n) is optimal when the degree is O(log n);
however, this low latency is obtained by NoN routing over
randomized networks to the prejudice of the system over-
head. As a matter of fact, the result in [8] is obtained by
trading off programmability and feasibility with efficiency
since in NoN routing over randomized networks a certain
amount of overhead is heavily underestimated. In this pa-
per, we show how to eliminate the extra-communication at
all and, similarly, eliminate the need of storing in each node
its neighbors of neighbors.

By using both randomization and NoN routing it is nec-
essary to transmit to a node its neighbors of neighbors: in
[8], the authors argue that it can be done without extra cost

by using keep-alive TCP messages. We believe that this is
not a suitable solution since transport protocols should not
be tampered with by any application protocol, because of
abstraction requirements. Anyway, by following their sug-
gestion, performances predicability of a NoN implementa-
tion can be seriously limited by underestimating this over-
head1 in the analysis.

In order to eliminate at all these drawbacks, we need to
eliminate the random factor in establishing each neighbor of
a node. In fact, determinism allows each node to calculate
locally the neighbors of its neighbors. Randomness is elimi-
nated as follows. First, we prove that it is possible to reduce
the use of random values from log n to one random number
for each node without degrading the efficiency of the system
with respect to the NoN routing as proposed in [8]. Actu-
ally, we show that with such a modification efficiency is im-
proved. On the basis of the above result we can then replace
the random number by a hash-function, thus having a com-
pletely deterministic network. Indeed, hashing can be done
(as an example) on the node ID so that node y, knowing
the ID x also knows x’s neighbors2. Hence, no additional
information is transmitted nor stored for NoN routing. An-
alyzed networks include several popular topologies: Chord,
Hypercube based networks, Symphony and Skip-graphs.

Theoretical results and extensive simulations show that
the proposed simplifications (while maintaining the origi-
nal node degree) do not increase the average path length of
the networks, on the contrary it is often improved in prac-
tice. The experiments performed exploits the Secure Hash
Algorithm (SHA-1).

It follows that our approach leads to “deterministic”
overlay networks which maintain the original degree and
the optimal average path length of the corresponding ran-
domized versions, while improving on the system overhead.

2 Preliminaries
In this section we report the definition of the existing

networks that are of interest for the rest of the paper and of
the NoN greedy algorithm.

We consider a set N of n nodes lying on a ring of 2m

identifiers (labeled from 0 to 2m − 1 in clockwise order).
Each node x, has an m bit ID and is connected3 with its
predecessor and its successor on the ring.
• Chord: For each 0 ≤ i < m, node x is connected by

edges to the nodes4 x+ 2i.

1Later, in Sec. 5, we prove that the overhead is, indeed, significative.
2Node y knows the exact position of x’s neighbors only if the network

is full (i.e. each ID is present). If the network is not full, node y knows the
IDs whose successors are the x’s neighbors (as defined in Section 2). We
stress that this is sufficient for the correct functioning of the network.

3When we say that a node x is connected to y, we means that x is
connected to y if y is a node in N , otherwise x is connected to the first
node that follows y.

4All the arithmetic operation on the ring are done mod2m.

R-Chord:[6] For each 0 ≤ i < m, let r(i) denote
an integer chosen uniformly at random from the inter-
val [0, 2i), node x is connected by edges to the nodes
x+2i+R(i).

• Hypercube: For each 0 ≤ i < m node x is connected
with the node yi where x and yi differ in exactly the po-
sition i.
R-Hypercube:[6] For each 1 ≤ i ≤ m, node x makes
a connection with node yi where yi is defined as fol-
lows: The top i− 1 bits of yi are identical to those of x.
The ith is flipped. The remaining m− i bits are chosen
uniformly at random.

• Symphony*:[6] Symphony* is derived from Sym-
phony [7]. Let δ denote a real number satisfying5

ln δ = (ln 2m)/k. Let I1 = [1, δ]. For 1 < i ≤ k,
let Ii = (δi−1, δi]. For interval Ii, let φi denote a
probability distribution over integers in Ii such that the
probability at integer d is proportional to 1/d. For each
1 ≤ i ≤ k an edge is established from node x to a node
yi = x+ ai, where ai is an integer drawn from φi.

• Skip-graph: [2] In a Skip-graph, the out-going edges of
a node x are determined by m(x), its membership vec-
tor, which is an infinite string of random bits6. Two
nodes are connected by an edge if their correspond-
ing membership vector share some prefix which is not
shared by any of the nodes between them. Formally,
let mk(x) denote the first k bit of m(x). The nodes x
and y are connected by an edge if there exists some k
such that mk(x) = mk(y) and ∀z in the interval (x, y)
it holds that mk(z) 6= mk(x). The cycle edges could be
viewed as corresponding to the empty prefix. It is easy
to see that w.h.p., all nodes have a logarithmic degree.

Skip-graphs [2] are different from the other three networks
that we just presented. In fact, in Skip-graphs, links are de-
termined by the membership vector, and therefore the keys
could be arbitrary. In other words, there is no need for
the keys to be randomized and they may maintain seman-
tic meaning. Hence the main advance of Skip-graphs is that
they supply prefix search and proximity search. However,
Skip-graphs do not address the issue of load balancing the
number of items per node.
THE NON-GREEDY PROTOCOL. We assume that each
node holds its own routing table, and on top of that holds
its neighbors routing tables. Let d(x, y) be a metric for the
nodes in the network. Here is the description of the routing
algorithm NoN-Greedy:
1. Assume the message is currently at node u 6=target.
2. Let V = {v1, v2, . . . , vk} be the neighbors of u. For

each 1 ≤ i ≤ k, let wi1, wi2, . . . , wik be the neighbors
of vi and let W = {wij | 1 ≤ i, j ≤ k}.

5Symphony* can have arbitrary degree k.
6We think of the length of m(x) as infinite for convenience even though

O(log n) bits suffice with high probability, in a network of n nodes.

2

3. Among the k2+k nodes in V ∪W , assume that z is the
closest to the target (with respect to metric d).

4. If z ∈ V route the message from u to z else z = wij ,
for some i and j, and we route the message from u via
vi to z.

Remark: We call the (standard) definition given above 2-
phase NoN that has been theoretically analyzed. A more
efficient definition, call it 1-phase NoN, can be obtained by
replacing Step 5 as follows:
4’. If z ∈ V route the message from u to z else z = wij ,

for some i and j and we route the message from u to vi.
Intuition can easily support the claim of efficiency of 1-

phase NoN: Re-applying the whole algorithm at node vi can
only extend the choices.

In the NoN-Greedy algorithm, vi may not be the neigh-
bor of u which is closest to the target (with respect to metric
d). The algorithm could be viewed as a greedy algorithm on
the square of the graph – a message gets routed to the best
possible node among those at distance two.

3 H-Networks
In this section we describe the novel version of Chord,

Hypercube and Symphony* based networks, called H-
Chord, H-Hypercube and H-Symphony*, and show that the
average path length isO(log n/ log log n) hops for perform-
ing lookups. The routing table size is O(log n) for Chord
and Hypercube while Symphony* has routing table size k
and the latency is O

(

(log2 n)/(k log k)
)

hops on average.
The key observation in our results is that generating

one single random number for each node in the network is
enough to preserve the O (log n/log log n) hops (on avg).
Routing occurs through canonical NoN. The random num-
ber is replaced by a hash-function defined on the node IDs
to get a deterministic algorithm with the same properties.
H-CHORD. Below we give a new network based on Chord.
By using hashing together with the new network we get the
same result as the NoN protocol for R-Chord [6], but with
the same message complexity for maintaining the network
intact but without any additional overhead as described in
the Introduction. The network is defined as follows.
Definition (H-Chord) Let H() denote a hash function,
that maps an id on the interval [0, 1). Each node x is
connected by an edge to the node x + 2i + bH(x)2ic, for
i = 0, . . . ,m− 1.

We analyze the protocol assuming to have a good hash
function, that generates integers taken uniformly at random
from the interval [0, 1).

We first consider the case of a full network, that is, n =
2m; afterwards we extend to any n ≤ 2m.

Lemma 1 The average path length is O(log n/ log log n)
hops for the NoN Greedy algorithm on H-Chord with n =
2m nodes.

Proof : We consider a source node s that wants to send a
message to a node t at distance d(s, t) = d. Let p be the
unique number with 2p ≤ d < 2p+1. There are two cases to
consider. In the first case p ≤ log n/ log log n. In this case
it suffices with O(p) hops to reach the destination, since as
for R-Chord, the distance decreases at least with a factor of
3/4 for each hop executed.

In the second case p > log n/ log log n. Let I =
(d − d′, d], where d′ = dd log log n/ log ne. Now, s has at
least p− 1 neighbors s1, . . . , sp−1 in the interval [s, s+ d].
Moreover, let s0 = s and S =

⋃p−1
i=0 si, we are investigat-

ing the probability of S having an outgoing edge entering
the interval I , i.e.,
P = Pr[Jk(si) ∈ I for some 0 ≤ i < p and 0 ≤ k < m]
where Jk(si) = si+2

k+bH(si)2
kc denotes the kth neigh-

bor of si. Let us assume that, for any node si ∈ S, the prob-
ability that it has an outgoing edge entering the interval I is
d′/2p. Each of these nodes have chosen its neighborhood
independently from the others, hence, the probability that
none of these nodes have an outgoing edge reaching the in-

terval I is
(

1− d′

2p

)|S|

≤
(

1− 2p log logn
2p logn

)

log n

log log n

≤ e−1,

since p > log n/ log log n. Hence, the probability that s can
reach the interval in two hops is at least 1 − e−1. Thus, in
O(log d/ log log n) hops, the distance is decreased to 2p

′

,
where p′ < log n/ log log n, and we have reduced case two
into case one.

Left is to prove the assumption. Consider a node si at
most a distance d from I. We are investigating the proba-
bility of si having an outgoing edge entering the interval I,
i.e., Pr[Jk(si) ∈ I for some 0 ≤ k < m].
There are two cases to consider.
1. d− d′ ≥ 2p. In this case the probability that Jp(si)

reaches the interval is equal to d′/2p.
2. d−d′ < 2p. The probability that one of the hops reaches

the interval I is equal to
Pr[Jp−1(si)∈(d− d′, 2p) or Jp(si)∈[2p, d]].
We can observe that
Claim 1 Jp(si) ∈ (2d − 2d′, 2p+1) implies that
Jp−1(si) ∈ (d− d′, 2p).
By noticing that, for any n > 16, the intervals (2d−
2d′, 2p+1) and [2p, d] do not overlap,

Pr [Jp−1(si) ∈ (d− d′, 2p) or Jp(si) ∈ [2p, d]]

= Pr
[

Jp(si)∈(2d−2d
′, 2p+1)

]

+Pr [Jp(si)∈[2
p, d]]

=
2p+1 − 2d+ 2d′ − 1 + d− 2p + 1

2p
>

d′

2p
.

Actually, if we go into the details of Theorem 5.2 in [6], we
can see that the H-Chord network works a little better in
Case 2, because of Claim 1.

We can also generalize the results to hold in a ring where
not all nodes are present. Due to Chord constraints the n

3

nodes can be assumed to be uniformly distributed [9].

Theorem 1 The average path length is O(log n/ log log n)
hops for the NoN Greedy algorithm on H-Chord in a ring
of size 2m where the number of nodes alive is n < 2m.
Proof. Omitted.

H-HYPERCUBE. We can obtain the same improvement in
the Hypercube.
Definition (H-Hypercube) Let H() denote a hash function
mapping an id on a sequence of m bits. For each 1≤i≤m,
node x makes a connection with node yi where yi is defined
as follows: The top i−1 bits of yi are identical to those of
x. The ith is flipped. The remaining m−i bits are identical
to those of H(x).

Theorem 2 The average path length with NoN greedy rout-
ing on the H-Hypercube is O(log n/ log log n) hops.
Proof. Omitted.

H-SYMPHONY*. We are also able to improve the Sym-
phony* protocol so that we generate only one random num-
ber that determines all the outgoing edges of a node.
Definition (H-Symphony*) Let H() denote a good hash
function that maps an id on the interval [0, 1) and let r =
H(x). The procedure for constructing the edges of a node
is changed as follows: For each φi, let a1, . . . , aq denote
the integers in the interval Ii = (δi−1, δi]. To choose the
destination of the ith out-going edge yi of a node x, we use
the mapping

fi(r) = al, if
∑l−1

j=0
1

siaj
≤ r ≤

∑l

i=0
1

siaj
,

where si =
∑q

j=1 1/aj .

By definition of H-Symphony*, the probability of choos-
ing the destination aj is equal to 1/siaj .

By choosing only one random number we gain in net-
work maintenance, since in order to compute the neighbors
of a neighbor, it is sufficient to know the random number
chosen by the node. Thereafter we can directly compute the
out-going edges of the neighbor using the mappings fi.

As we will also see, we can get a slightly smaller average
path length due to the following lemma.

Lemma 2 Consider an interval I = [a, b], with a ∈ Ii and
b ∈ Ii+1. The probability that a node s has an out-going
edge entering I is Pr[Ji(s)∈I∩Ii]+Pr[Ji+1(s)∈I∩Ii+1],
where Jk(s) denotes the kth neighbor of s.
Proof. Omitted.

Consider now the routing procedure in the H-
Symphony* network. In the following, we will show that
average path length when using the greedy algorithm or the
NoN greedy algorithm remains the same as for the original
network.

Theorem 3 The average path length is O
(

(log2 n)/k
)

hops for the greedy routing on H-Symphony*.
Proof. Omitted.

Theorem 4 The average path length is
O
(

(log2 n)/(k log k)
)

hops for the NoN greedy algo-
rithm on H-Symphony*.
Proof. Omitted.

Actually, if we go into the details of Theorem 5.3 in [6],
we see that the H-Symphony* network works a little bit bet-
ter in some cases, because of the independency shown in
Lemma 2.

4 H-Skip-graph
In this section, we, first, comment on the fact that the

technique used for Chord, Hypercube and Symphony* can-
not be fruitfully applied on skip-graphs. Nevertheless, we
show that, in the modified version of Skip-graphs by chang-
ing the metric we can obtain better results.

Let us define, first, the modified version of Skip-graphs.
Definition (H-Skip-graph) Let H() denote a hash func-
tion that maps an id on a sequence of O(log n) bits.
H-Skip-graphs are identical to the skip-graphs, but with
m(x)=H(x).

Let S be a generic Skip-graph with n nodes, for each
possible binary sequence p of size k, we denote with Sp a
ring that contains all the nodes of S such that p is a pre-
fix of their membership vector. Formally Sp = {v ∈
S s.t. mk(v) = p}. In particular, if we denote with ε the
empty sequence, Sε = S. It is easy to show that the ex-
pected number of nodes on a Ring Sp is n

2k .
NoN greedy routing on the modified version of Skip-

graphs does not avoid the system overhead of knowing the
neighbors’ neighbors. To wit, a node in H-Skip-graphs, in
spite of using a deterministic hash function, has no way of
deriving the IDs of its neighbors’ neighbors from the mem-
bership vectors, since that information depends globally on
the network topology. The membership vectors of its neigh-
bors does not help in this case. As a consequence, when we
use NoN greedy routing the system overhead of transmit-
ting and storing neighbors’ neighbors cannot be avoided.

Nevertheless, by using a deterministic hash function the
membership vector of the destination becomes available to
the source, and a more efficient search is now possible.

In the three networks previously analyzed, the metric
that was used in the routing was the distance between nodes
in terms of IDs (i.e. the distance on the ring):

d(x, y) = (y + 2m − x) mod 2m.
When we know the membership vector of the destination
we can define a new metric and we can use both the greedy
and NoN routing strategy with the new metric. Our goal is
to evaluate the distance from two nodes on the smallest ring
that contains both nodes. We define the new metric as:

4

d′(x, y) = (y+2m−x) mod 2m

2|lcs(m(x),m(y))|

where lcs(m(x),m(y)) computes the longest common pre-
fix between m(x) and m(y).

This new metric is a better estimate of d since it measures
the distance between x and y on the smallest ring that con-
tains both x and y. In particular, if m(x) and m(y) share no
prefix (i.e. lcs(m(x),m(y)) = ε) then d(x, y) = d′(x, y).
To provide more intuition: two nodes x and y can be far
apart on the ring Sε but can be very close within a small
size ring Sp, where p is their common prefix.

5 Maintenance Overhead
In this section we consider the communication complex-

ity of maintaining neighborhood information. We restrict
our discussion to the Chord-like systems although the same
line of arguments are suited also for the Hypercube, Sym-
phony* and Skip-graphs networks. Note that R-Chord uses
Ω(log2n) words of memory, since it keeps track of all
the NoN information, whereas the H-Chord network only
needs a storage of O(log n).

As explained by Manku et al. [8],R-Chord uses the same
network update algorithms as Chord. In addition, the neigh-
bors of neighbors information is communicated during ba-
sic network maintenance.

We already commented on the feasibility of this sugges-
tion in the Introduction. Here, we try to estimate the over-
head caused by this communication. The careful reader al-
ready noticed that H-Chord uses the same network mainte-
nance protocol as Chord, i.e., without any extra overhead.
This means that the exact neighbors of neighbors informa-
tion is not available in H-Chord, since the nodes suggested
by the hash-function might not be alive.

However, the hash-function provides us with the node
IDs of the neighbors’ neighbors. This information is suffi-
cient to perform efficient lookups. The node ID is namely
a lower bound on the distance to the neighbor in ques-
tion. Hence, we can use this distance to estimate the search
progress in each step. It follows that using the estimated dis-
tances in Theorem 1 we get an upper bound on the number
of hops needed to reach the target.

Below we describe the additional communication costs
of R-Chord. Since Manku et al. do not provide exact al-
gorithms we give lower bounds on the communication cost
and remarks stating the probable overhead in practice.

Theorem 5 The communication complexity, using R-
Chord together with the 1-lookahead protocol, for main-
taining the network structure is Ω(log n) messages for each
node and each round if no failures, joins or leaves occur.
Proof. Omitted.

Remark: If the probability of neighborhood-updates is
high, it is more likely that the protocol directly checks
which neighbors of the neighbor have changed using a log n

bit word. Hence, the communication complexity will be
Ω(log2 n) bits/node and round in practice.

Theorem 6 Every join, leave or failure incur a message
overhead of Ω(log2n) messages and Ω(log3 n) bits.
Proof. Omitted.

6 Experimental Results
We report some results of our validating simulations. We

ran simulations to compare the performances of the greedy
routing and NoN routing on the randomized networks with
the same routing algorithms on our deterministic version of
each network. The performance are measured in terms of
average path length.

Our goal was to show that no hidden constant (in the
big-Oh notation) in the theoretical results of the previous
sections could limit the significance of the deterministic net-
works that we propose here.

The results are encouraging: our deterministic networks
behave equally well as the randomized version in our sim-
ulations and do not suffer the drawback of system overhead
for keeping and transmitting information on neighbors of
neighbors.

In Fig. 1 we report the results on Chord. Similar results
are obtained for the Hypercube while experiments for Sym-
phony* are in progress. In Fig. 1 (left) we show the average
path length for Chord with up to 218 IDs and nodes, i.e. a
ring full of nodes. In Fig. 1 (right) we show the results for
a ring of 232 IDs where the number of nodes varies from 2
to 218. In both figures, we can see that H-Chord behaves as
well as R-Chord. It should be noticed that, in our evalua-
tion, we used, for all the networks, the 1-phase NoN that is
more efficient than the 2-phase NoN.
In Fig. 2, we show simulation results for the average path
length of Skip-graphs. In this case, we first need to com-
pare the (randomized) Skip-graphs with our definition of H-
Skip-graphs. In Fig. 2 (left) we show that the deterministic
version of Skip-graphs works as efficiently as the random-
ized, standard one with respect to Greedy and NoN routing
strategies. As noticed in Section 4, using a hash function
does not avoid the costly operation of knowing the neigh-
bors’ neighbors (as happens, on the contrary, for Chord,
Hypercube and Symphony*). In Fig. 2 (right) our goal is
to evaluate the improvement by using the new metric d′ in
applying greedy and NoN routing strategies. We show that
a significant improvement is obtained by using d′ as a met-
ric in applying both routing strategies, but the improvement
is more marked for the greedy strategy. In particular, we
would like to emphasize that the greedy routing with our
new metric is only slightly less efficient than the standard
NoN routing, but has no additional overhead.

5

Figure 1: The randomized version of Chord is compared with H-Chord (left) with full network of sizes from 2 to 2
18; (right) with nodes

from 2 to 2
18 on a fixed size ring with key space size 2

32.

Figure 2: (left) The standard Skip-graphs compared with H-Skip-graphs. (right) H-Skip-graphs compared with a different distance metric,
evaluating two strategies: Greedy and NoN with network of sizes from 2 to 2

17.

7 Conclusions and Discussion
We propose routing schemes that optimize the average

number of hops for lookup requests in Peer–to–Peer sys-
tems. Unlikely other proposed system our scheme does not
add any overhead to the system. Recently introduced varia-
tion of greedy routing, called neighbor–of–neighbor (NoN),
allows to get optimal average path length with respect to the
degree; overhead is payed compared to previous systems
due to additional network maintenance. Our proposal has
the advantage of “limiting” randomization to such an ex-
tent that neighborhood information can be encoded within
the hash-value of the node ID. This enables us to use NoN
lookup routing without any additional overhead.

References
[1] National Institute of Standards and Technology, Secure Hash

Standard. http://www.itl.nist.gov/fipspubs/fip180-1.htm.
[2] J. Aspnes and G. Shah. Skip graphs. Proc. of 14th Annual

ACM-SIAM Symposium on Discrete Algorithms, Jan 2003.
[3] P. Druschel and A. Rowstron. Pastry: Scalable, decentralized

object location, and routing for large-scale peer-to-peer sys-

tems. Lecture Notes in Computer Science, 2218, Nov 2001.
[4] M. Kaashoek and D. Krager. Koorde: A simple degree-

optimal distributed hash table. Proc. of IPTPS, Feb 2003.
[5] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable

and dynamic emulation of the butterfly. Proc. of ACM Symp.
on Principles of Distr. Comp. (PODC), Aug 2002.

[6] G. Manku. The power of lookahead in small-world routing
networks. Tech. Rep., CS Dept, Stanford Univ., Nov 2003.

[7] G. Manku, M. Bawa, and P. Raghavan. Symphony: Dis-
tributed hashing in a small world. Proc. USENIX Symp. on
Internet Tech. and Systems (USITS), Mar 2003.

[8] G. Manku, M. Naor, and U. Wieder. Know thy neighbor’s
neighbor: The power of lookahead in randomized p2p net-
works. Proc. of STOC, June 2004.

[9] I. Stoica, R. Morris, D. Liben-Nowell, M. F. K. D. R. Karger,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-
peer lookup protocol for internet applications. In IEEE/ACM
Transactions on Networking, 12(2):205, Apr 2004.

[10] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing.
Tech. Rep., CS Dept, Univ. of California at Berkeley, 2001.

6

