
JSEB (Java Scalable sErvices Builder):
Scalable Systems for Clusters of Workstations

Maria Barra, Giuseppe Cattaneo, Umberto Ferraro Petrillo, Vittorio Scarano
Dip. di Informatica ed Appl. “R.M. Capocelli” Universita‘ di Salerno

84081 Baronissi (SA) – Italy

Abstract

We present a report on JSEB (Java Scalable Service
Builder) whose goal is to offer programmers a tool that can
be used to efficiently add scalability and fault-tolerance to
a replicated service in cluster(s) of workstations.

1. Introduction
During last years we have witnessed an impressive

amount of interest in cluster computing. Besides efficiency,
availability and economicity, one of the reasons of this in-
terest is the need to build scalable services that are able to
handle a large number of users requests. In this situation,
one of the most effective solutions is to replicate the service
using a cluster of inexpensive and widely available small
workstations (i.e. PCs) instead than having a single server
machine. The choice of replicating a service implies sev-
eral problems such as the incremental scalability, the load
balancing and the fault trasparency. These problems can be
addressed by making an optimal distribution of the clients’
requests to the cluster of servers and by adopting strategies
for fault recovery.

Offering scalable services is particularly critical nowa-
days because of the pressure and the strain that the World
Wide Web induces on any distributed service. Several im-
pressive real examples involved the CNN network web site
after the publishing of Starr Report, the US Geological web
site after a earthquake in the Bay area in San Francisco and
the Microsoft ftp site when new software is released.

JSEB provides a support tool for building client-side
scalable services. JSEB model is based upon a communica-
tion and operational framework used to monitor the state of
several clusters of servers offering a replicated service. A
JSEB client can attach itself to the monitoring framework
to obtain the servers state information report. According to
information obtained by monitors each JSEB client is able
to pick the best available server for a given service.

JSEB offers a general solution to provide scalable ser-
vices on cluster of PCs indipendently from the specific pro-
tocol. The scenario we are planning is the following (few
examples are provided at the end of the paper): one has
a “traditional” client-server system and wants to make it
highly available by providing replicated servers on a clus-

ter of PCs. Then, by “attaching” to each server a Server
Monitor (details will be provided later) and designing the
client “around” a Client Monitor, one has (for free) a hi-
erarchical infrastructure that is able to collect information
about servers’ state and “provide” it to the clients that can,
therefore, direct their queries to the “best” server.

JSEB is general since it offers an infrastructure for any
protocol and for any load metric the designer can choose.
It is efficient, since it tries to minimize the communication
load among servers and clients, it adds scalability to an ex-
isting client-server architecture, since it allows load balanc-
ing among the servers in the cluster, it is fault-tolerant, since
it is able to detect faults and consequently direct clients to-
ward functioning servers.

The reader would notice that JSEB architecture can be
easily extended client-side by integrating proxies for a more
efficient communication with clients. Since our paper is tai-
lored to present JSEB basic characteristics with a particular
emphasis on the server side, we choose not to present such
extension but it must be considered, in the rest of the paper,
that every reference to clients can be substituted by client or
proxy.

2. Related work
In order to identify JSEB characteristics, we present here

several important parameters that must be taken into ac-
count for a scalable service.
• Servers CPU load: How much the servers’ CPU load is
affected by the overhead needed to scale the service.
• Clients CPU load: How much the clients’ CPU load is
affected by the overhead needed to scale the service.
• Server-to-Server communication load: How much is the
traffic on the server network communication links needed
to scale the service.
• Client-to-Server communication load: How much is the
traffic on the client-to-server communication links needed
to scale the service.
• Servers Network topology: The connection topology and
the connections bandwidth of the servers’ replicating a ser-
vice.
• Servers-Clients ratio: How many servers with respect to
the number of existing clients.
• Server Replication trade-off: How much overhead is re-
quired to replicate a service through a cluster of servers.



The scalability issue can be solved both with general-
purpose solutions and special-purpose solutions. General-
purpose solutions can be applied to a wide range of services
but are less effective and more difficult to characterize than
special-purpose one.

Among the general-purpose solutions there is DNS alias-
ing: each server of the pool can be reached using the same
Internet literal address. Each time a client needs to make a
service request to one of the servers, it makes a resolution
query to the DNS system to resolve the unique server ad-
dress. The DNS system will return the real address of one
of the server machines in the cluster choosed using a round-
robin algorithm. Since the DNS aliasing technique relies on
the queries made to the DNS systems by the service clients,
it trickles down the scalability problem to the DNS service,
that, now, becomes heavily loaded and, possibly, a bottle-
neck to the overall performances since it has to manage all
the resolution requests coming from the clients. This solu-
tion does not affect the servers CPU load while it requires
a sligth amount of clients CPU load for the DNS queries.

A different general-purpose solution is presented in
[Hunt98] and in [Anderson96]. This kind of solution is
working at TCP level and service requests by the clients
are trasparently routed to one of the servers by a device, di-
rectly connected to the network, that forwards each client
request to a server using a round robin distribution algo-
rithm. This approach to the scalability problem does not
affect the servers CPU load neither the clients CPU load .

Smart Clients [Yoshikawa97] propose a client-side ap-
proach to provide transparent access to scalable services.
Smart Client API offer two service-specific Java applet. The
client interface applet provides the interface to the user and
makes the request of service. The Director applet makes
server requests to the appropriate (least loaded) server, and
updates its notion of server state. The Smart Clients solu-
tion requires a fair amount of servers CPU load and Server-
to-Server communication load while requiring a consistent
amount of clients CPU load and Client-to-Server communi-
cation load because the state update information and server
selection functions are client oriented.

Since special-purpose solutions can be tailored on the
needs of a specifical service, we can distinguish several so-
lutions according to the service we are scaling.
• HTTP: First of all, let us consider HyperText Transfer
Protocol (HTTP). NCSA [Katz94] proposed a solution in
1994 that is based on the DNS aliasing technique. The
NCSA approach builds a multi-workstation HTTP server
using a cluster of workstations, the service requests to these
workstations are assigned using a DNS aliasing system.

Another solution proposed for HTTP is SWEB
[Andresen96] that requires the cluster of servers to be con-
nected through a fast LAN. Scalability is achieved by ac-
tively monitoring the run-time CPU, disk I/O, and network

load of system resource units. Each time an HTTP request is
made to a server, it is parsed and then dynamically redirect
to propers nodes for efficient processing. This approach re-
quires a consistent amount of servers CPU load and Server-
to-Server communication load while it does not affect the
clients CPU load and the Client-to-Server communication
load.
• FTP: The second service we consider is FTP (File Trans-
fer Protocol). FTP services are usually replicated by me-
diating between two opposite needs: from the server point
of view, one would like to maximize FTP server through-
put while, from the client point of view, one would like to
minimize the mean download time for each client. To me-
diate between these opposite constraints, FTP servers are
usually replicated through mirroring and then spread across
the network in order to minimize the network distance be-
tween the replicated servers and the clients. Howewer this
approach is not well supported from the client-side, the FTP
protocol does not allow a client to retrieve from an existing
FTP server a list of all its replicas. Some FTP client ap-
plications (as [Getright]) allow the user to manually input a
list of replicated FTP servers and then choose, among them,
the one with better round-trip-time (i.e. the time needed by
an ICMP packet to go to destination an be acknowledged).
Moreover, the Getright application periodically pings all
the existing servers and automatically switches to the faster
server even if there is a download in progress. This ap-
proach involves a fair amount of Client-to-Server commu-
nication load because each client needs to periodically ping
all the existing servers.
• Multiplayer online-gaming: The online-gaming allows
two or more players to attend a shared game session. Each
player owns a copy of a same game and agrees with several
other players to create a shared game session where all of
them can attend.

To be able to cover a large amount of users, online-
gaming providers usually replicate gaming servers in a hi-
erarchical way.

As a consequence, the player who would like to find the
better gaming server often needs to connect its client to each
gaming server known searching for the server with the best
performances. In the last years several solutions have been
proposed for this problem, all these solutions work on the
client side (as [Gamespy]) allowing a player to continuosly
ping a list of known remote servers to find which of them
is able to better serve a remote request. This approach is
clearly not efficient since it contributes to increase the work
load of servers. The requests sent by the client can them-
selves affect the server workload and compromise its ability
to provide the service.
• DBMS: Parallelizing Database Management Systems is
a known field of research whose aim is to improve per-
formances of large DBMS by spreading load over several



computers. Oracle [Bamford98, Oracle8], IBM [Baru95]
and others have realized parallel DBMS with different de-
grees of parallelism. Recent research [Exbrayat00] has pro-
posed coupled query evaluators to add parallelism to an ex-
isting DBMS. Their system, Enkidu, is developed in Java
and (while offering a efficient redistribution of queries to
a pool of servers, thus allowing for a higher number of
clients) has the drawback of a centralized Server Module
that is in charge for spreading the queries to the cluster.

3. JSEB System
We assume that the services we want to scale can be

replicated through several clusters of servers and that com-
puters in the same cluster are connected by fast links while
clusters are connected by slower links. JSEB system acts
both on the:
• Server side: JSEB framework collects information about
the state of all the replicated servers. This work is accom-
plished by running for each server an instance of the JSEB
Server Monitor module. Each Server Monitor periodi-
cally retrieves information about the state of the server that
is monitoring. These information are spread to all the other
Server Monitors in the same cluster so that each Server
Monitor knows the state of every other one. Moreover, for
each cluster of Server Monitor we require the existence
of a leader Server Monitor. The leader Server Monitor
is in charge of providing information describing its own
cluster state to the leader of other clusters (foreign clusters)
and collecting cluster information reported by other leaders.
A faulty leader triggers a simple leader election algorithm
based on IDs. The information received from foreign clus-
ters are spread from the leader to all the Server Monitors
of its cluster. Finally, each Server Monitor manages a set
of client connections, these connections are used to periodi-
cally spread the update state information to the client appli-
cations.
• Client side: JSEB framework allows a client application
to know which is the state of all servers belonging to a set
of clusters. Server state information are held by the Client
Monitor modules. These modules are integrated into each
client program, their purpose is to periodically receive up-
date notification from their related Server Monitor. Using
the Client Monitor module, the client is able at any time
to identify the server machine whose state is optimal with
respect to a given service metric function.

3.1. Service metric function

One of the main issues in scaling a service is rating the
way a given server provides it. This rating can be accom-
plished by selecting a set of metrics that better describe the
state of the server and combining them using a service met-
ric function. Here is an overall classification of the standard
metrics that can be defined in a client-server architecture:
• Server application oriented metrics: They measure the

way the server application is performing including concepts
like the number of active client connections, the number of
the requests succesfully served in a unit of time and other
service-specific parameters.
• Host oriented metrics: They measure how much loaded
is a server machine including concepts like the amount of
available resources, the CPU load1 and the number of exist-
ing processes.
• Connection oriented metrics: They measure the quality
of the communication links connecting the server machine
to the clients including concepts like the bandwidth of the
link, the round-trip time and the number of hops.

The service metric function weighs (ponders) the infor-
mation provided by the selected metrics to estimate the per-
formance of the given service.

An accurate service metric function must be built accord-
ing parameters like the type of the service and the network
topology, since these parameters may change it is not pos-
sible to define a standard one to be used in all cases. JSEB
provides a set of pre-defined metric functions but the de-
signer can specify particularly designed functions that take
into account the semantic of the protocol.

3.2. JSEB architecture

We now describe JSEB architecture and functionalities.
JSEB provides a set of general-purpose classes to be used
in building scalable client-server services.

JSEB Server Monitor module.
The Server Monitor module is a Java object: we need to

run an instance of Server Monitor for each server program
we want to monitor. Server Monitor’s functions are:

• Collecting and spreading server state information. Every
Server Monitor instance holds a list of all the servers at-
tached to the current cluster together with the related state
information. Moreover, every Server Monitor holds also
a list of all the servers belonging to foreign clusters to-
gether with their state information. Addition or deletion of
a Server Monitor is notified to local cluster using a broad-
casting algorithm, while it is notified to remote clusters by
the leader. Information regarding the current state of the
server are collected through the invocation of the method
getLoad of the class Server Monitor, the coder chooses
which metric information gather by providing an implemen-
tation of this method. State information are spread to all the
Server Monitor.
• Dealing with clients . Server Monitor offers a ser-
vice for accessing the state information collected by the
JSEB framework. Client applications interested in obtain-
ing servers’ state information establish a connection with a

1Notice that, since we distinguish between application metrics and host
metrics, we allow different services to run on the same machine.



reference Server Monitor. The client connection requests
are managed by the Server Monitor using a rebalancing
algorithm as shown in sec. 3.3. Moreover, Server Moni-
tor periodically notifies to all its connected clients the state
information list it collects.

JSEB Client Monitor module.
The Client Monitor module is a Java object. Clients to

be attached to a Server Monitor cluster need to run an in-
stance of Client Monitor in a separate Java thread. The
Client Monitor functions are:
• Receiving server state information. Each Client Monitor
needs to connect to a reference Server Monitor. By listen-
ing on this connection the Client Monitor receives from
the Server Monitor the state information of all the servers
belonging to all the available clusters. The Client Monitor
holds an history of all the recent state information updates.
The time between two update is variable, the Client Mon-
itor can indicate to the Server Monitor a preferred update
time rate, this indication is proposed by the client accord-
ing to parameters like the type of service and the network
bandwidth. If the reference Server Monitor fails the Client
Monitor will try to connect itself to the least loaded Server
Monitor known.
• Selecting an optimal server. At any time the client pro-
gram can use its Client Monitor module to pick the address
of the best server known. The server selection function
is carried out by the method pickBest of the class Client
Monitor. The selection function computes for each server
a service metric function using the available state informa-
tion, the name of this method is evalServer. After rating the
state of each server, the Client Monitor module returns, as
the best server, the one whose state is optimal. The default
implementation of evalServer computes the identity func-
tion (i.e. the input is not processed) while the default im-
plementation of pickBest computes the minimum function
(i.e. the optimal server is the one with the minimum rat-
ing). These implementations can be overrided deriving the
Client Monitor class and specializing it. Besides the ad-
dress of the optimal server, the Client Monitor is also able
to report the state of all servers and their rating.
3.3. JSEB Efficiency and Scalability.

The approach used by JSEB to solve the scalability issue
requires a consistent communication overhead. This over-
head could be critical especially when the number of Client
Monitor or Server Monitor is very large, to face this prob-
lem JSEB implements several solutions:
• adopting a hierarchical Server Monitor communication
scheme. While all the computers in a same cluster are con-
nected via a fast communication link, computers in differ-
ent clusters often can only use a slower communication
link. In this scenario we use two distinct approaches for
intra-cluster communication and for inter-cluster communi-
cation.

• inter-cluster communication. The leader of a JSEB
cluster optimizes the communication with foreign
leaders buffering all the relevant state information col-
lected from the other Server Monitors in its cluster.
Then, these information are sent to all the foreign lead-
ers in one shot using a standard TCP socket connec-
tion.

• intra-cluster communication. Each Server Monitor
in a cluster spread its state change information to the
other Server Monitors using a UDP multicast socket
connection. The UDP multicast communication al-
lows a Server Monitor to notify its state change to all
the other Server Monitors using a single transmission
thus minimizing the amount of network load.

• notifying only relevant state change. Each time a Server
Monitor runs the getLoad method to update its state in-
formation the new value is compared with the last known
value. If the state change is relevant, than the new value is
spread to the other Server Monitors and to the Client Mon-
itor otherwise it is ignored. The default behaviour does not
spread state changes that do not alter state information. This
behaviour can be changed overriding the method compare
of the class Server Monitor. In this way it is possible to
define upon which conditions a state change has to be con-
sidered relevant.
• adapting the update rate. Initially, the Server Monitor
tries to send state information to its Client Monitor with a
fixed frequency. This frequency is adapted according to the
current performance of the Server Monitor and to the speed
of the communication links. In the first case the Server
Monitor can slow down the update activity when there is
too much load. In the second case the Client Monitor
requests to the Server Monitor to change the update fre-
quency. Notice that the programmer can choose the update
frequency according to the nature of service provided.

Rebalancing algorithm and Fault-tolerance. As we
have seen clients who use JSEB need to attach themselves
to a Server Monitor using the Client Monitor module.
On the server side, managing Client Monitor connections
can be very expensive especially if the number of con-
nected clients is very high. To better serve big amounts
of client connections JSEB implements a rebalancing algo-
rithm; each time a Server Monitor module receives a new
client connection request it checks which is the minimum
number of managed connections by any other Server Mon-
itor. If the number of active connections is greater than the
minimum number of a costant k, the connection request is
sent to the least loaded Server Monitor. To make possi-
ble the rebalancing each Server Monitor needs to know the
number of connections managed by all the other ones. This
information is spread by the Server Monitors with the state
information update.



This approach provides also a solution for handling
Server Monitor failures. In these cases all Client Mon-
itor that are connected to a faulty Server Monitor detect
the failure and move themselves to the best Server Moni-
tor they know. In this situation the rebalancing algorithm
avoids a single Server Monitor to be overloaded by a large
number of Client Monitor connections. Of course, it is
possible that the best Server Monitor becomes crowded
and, therefore, some of the Client Monitor will be moved
toward the next best server and so on.

3.4. Client-side state information delivery.

According to the type of service a client could have need
to update its notion of the servers state with a different time
rate from the one used by the Client Monitor in its com-
munication with the Server Monitor.

For example while using a pool of replicated Web
servers, the state information could be effectively used each
time a new HTTP request is made. Howewer, once run, a
single request should not be affected by the servers state,
this holds because the average size of the HTTP document
is small so the cost to retrieve a document from a bad server
is generally smaller than the one needed to redirect the re-
quest to a better server.

Instead, while downloading a file using replicated FTP
servers we are interested in knowing at any time which is
the fastest server available, if such server does not match the
currently used server we can drop the existing connection
and continue to download the file from the new server.

To face these cases JSEB offers two approaches, a re-
quest model and an event-driven model. In the request
model each time the client program needs to request a ser-
vice it uses its reference to the Client Monitor module to
know which are the servers state. In the event-driven model,
the client program register itself to a service offered by the
Client Monitor module for the delivery of state informa-
tion. Each time the Client Monitor will get an update from
the Server Monitor, the client program will be notified by
means of an JSEB update event.

The request model for state information delivery.
The Client Monitor module implements a set services

for obtaining information about the state of the cluster
of servers. The services offered by the Client Monitor
are exported through the updateInterface. By request-
ing these services, a client program it is able to query the
Client Monitor for information like the number of avail-
able servers, the IP address of the best server and the history
of servers state information.

The event-driven model for state information delivery.
The Client Monitor module is able to spread the infor-

mation received from a cluster of Server Monitor using

a specialized version of Java events. Each Client Moni-
tor holds a list of object references interested in receiving
the information about the number and the state of the avail-
able servers. When the Client Monitor receives an update
state information, it notifies this information to all interested
clients objects by firing a JSEB update information event.
The JSEB update information events are delivered to all in-
terested clients using the standard Java event channel. The
client objects that are interested in receiving JSEB events
need to implement the jsebEventListener interface.

3.5. Application scenarios

• File Transfer Protocol. File Transfer Protocol is session
oriented and therefore, the application of JSEB requires a
certain amount of programming client-side that may involve
integrating JSEB client into the existing FTP client.

In fact, limited coding is required if one wants just to
add the capability to choose the “best” FTP server automat-
ically (as in [Getright]). In this case, though, the FTP client
is tied to the server for the whole session and, if the FTP
server chosen becomes heavily loaded (or is not anymore
the “best” server), then the (ordinary) client cannot auto-
matically switch to another server.

If one wants to obtain a more efficient integration with
JSEB (and a consequent wider scalability and load balanc-
ing) then a client must be developed (or reused) integrating
mechanisms to preserve (and replicate) the state of the ses-
sion after each command (such as current directory, authen-
tication, etc.) so that, before each potentially “heavy duty”
command, a pickbest() method would select the server des-
ignated to offer the best service. We notice that the policy to
establish what command must be preceded by a pickbest se-
lection can be either designed by the programmer and hard-
wired into the client (i.e. a policy as “every GET/PUT com-
mand is heavy”), chosen by the user (i.e. by configuring the
client) or even adapted to the run-time performances of the
replicated FTP server on the network of PCs (i.e. chang-
ing the treshold of file size which triggers the execution of
pickbest()).
• Multiplayer online-gaming. The integration of JSEB
into this architecture works both on the server-side and on
the client-side. On the server-side, each replicated server
runs a Server Monitor who gathers information about the
workload of the service provider, spread this information to
the other Server Monitor and notifies this information to
the interest clients.

On the client-side, each players runs a Client Monitor
to periodically receives update information about the state
of each server. The significance of this approach is that it
allows the servers to effectively control the flow of informa-
tion, while in the client-side approach several clients could
compromise servers activity by sending a large amount of
requests, in our solution the servers push information to-



ward the clients, the clients are just listener.
• Parallel DBMS. As we said in the Introduction, it is
possible to further increase scalability of Parallel DBMS
as Enkidu [Exbrayat00] by adding JSEB into their system.
This could be done at a very low cost since their system
is entirely written in Java (with a JNI interface to some C
code).

DBMS offers a good example of how JSEB generic ser-
vice metric functions can be fruitfully istantiated for each
service. For example, one may want to monitor servers not
only according to their load (expressed by various parame-
ters) but also as caching locality: a server can be particularly
well-suited for an SQL query (no matter the load) since it al-
ready extracted a large part of the relevant data from the DB.
By sending clients information on the last queries answered
by each server, a Client Monitor can direct the query to the
“best” server, that may not be the least loaded but that can
quickly answer the query.

4. Conclusions
JSEB is a general framework to add scalability and fault-

tolerance to existing systems whose servers are run on clus-
ters of workstations. It is efficient and easily usable, more-
over, it can deal with heterogeneous 3-level architectures
by allowing (for example) to monitor and scale WWW and
DBMS services at once. JSEB extensions to deal with
multi-level distributed architectures (both server-side, as in
the previous example, and client-side., by adding proxies)
are straightforward and substantiate the claimed generality
of JSEB.

Moreover, JSEB can be effectively used to build scalable
services where server selection functions are very complex
and specific to the used protocol. In these cases by migrat-
ing this computational load from the servers to the clients
the servers CPU load is minimal. The Server-to-Server
communication load and the Client-to-Server communi-
cation load required by the Client Monitor and Server
Monitor activities can be fine tuned by properly setting the
JSEB update rates. This option is useful when servers are
distributed on a geographical network or when the Servers-
Clients ratio is very low.

Further work is planned along several directions: on one
hand, JSEB will be used to implement several scalable ser-
vices such as FTP; on the other hand, we plan to include
an adaptive mechanism to avoid communication overhead
as the network performances degrade. Finally, interesting
work is planned on the formalization of standard metrics
to rate server performances for the most representative ser-
vices.

References
[Amir96] Y. Amir, A. Peterson and D. Shaw. “Seamlessly Selecting the

Best Copy from Internet-Wide Replicated Web Servers ”. Proc. 12th
International Symposium on DIstributed Computing, Andros Greece,
September 24-26, 1998.

[Anderson96] E.Anderson, D.Patterson, E.Brewer. “The Magic Router:
an application of fast packet interposing”. Unpublished report, Uni-
versity of California, Berkeley, May 1996.

[Andresen96] D. Andresen, T. Yang, V. Holmedahl and O. Ibarra.
“SWEB: Towards a scalable WWW server on multicomputers ”. Proc.
of the 10th International Parallel Processing Symposium (IPPS’96),
Hawaii, April 1996.

[Baker99] S.M. Baker, B. Moon. “Distributed cooperative Web servers”.
Proc. of the 8th International World Wide Web Conference, pages 137-
151, Toronto, Canada, May, 1999.

[Bamford98] R.Bamford, D.Butler, D.Klots et. al. “Architecture of Oracle
Parallel Server”. In Proc. of VLDB 98 (New York USA), pp.669-670,
August 1998.

[Berners-Lee95] T. Berners-Lee. “HyperText Transfer Protocol
HTTP/1.0”. October 1995. HTTP Working Group Internet Draft

[Brisco95] T. Brisco. “DNS support for Load Balancing”. April 1995.
Network Working Group RFC 1794.

[Baru95] C.Baru, G.Fecteau, A.Goya et. al. “DB2 Parallel Edition”. IBM
System Journal, vol. 34 No. 2 PP. 292-322, 1995.

[Comer87] D.E. Comer. “Internetworking with TCP/IP. Principles, Pro-
tocols and Architecture”. Prentice-Hall International, Inc., 1987.

[Crovella95] M.E. Crovella and R.L. Carter “Dynamic Server Selection
in the Internet”. Proc. of the Third IEEE Workshop on the Architec-
ture and Implementation of High Performance Communication Sub-
systems (HPCS’95).

[Exbrayat00] M.Exbrayat, L.Brunie. “A PC-NOW Based Parallel Exten-
sion for a Sequential DBMS”. Proc. of PC-NOW 2000, International
Workshop on Personal Computer based networks Of Workstations,
held with IPDPS 2000. Springer-Verlag LNCS series.

[Gamespy] http://www.gamespy.com

[Getright] http://www.getright.com.

[Holmedahl98] V. Holmedahl, B. Smith, and T. Yang. “Cooperative
Caching of Dynamic Content on a Distributed Web Server”. Proc of
7th IEEE International Symposium on High Performance Distributed
Computing (HDPC-7) Chicago, IL USA July 28-31, 1998.

[Hunt98] G.H.Hunt, G.S.Goldszmidt, R.P. King, R. Mukherjee. “Net-
work Dispatcher: a connection router for scalable Internet Services”.
Proc. of 7th International WWW Conference, Australia, 1998.

[Karger99] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhani-
dina, K. Iwamoto, B. Kim, L. Matkins, Y. Yerushalmi. “Web caching
with consistent hashing”. Proc. of the 8th International World Wide
Web Conference, pages 125-135, Toronto, Canada, May, 1999.

[Katz94] E.D. Katz, M. Butler, and R. McGrath. “A Scalable HTTP
Server: The NCSA Prototype”. Computer Networks and ISDN Sys-
tems 27 (1994) 155-164.

[Oracle8] Oracle. “Oracle Parallel Server: solution for mission critical
computing”. Tech. Rep. Oracle Corp. Redwood Shores, CA (USA)
Feb. 1999.

[Sayal98] M. Sayal, Y. Breitbart, P. Scheuermann, R. Vingralek. “Selec-
tion Algorithms for Replicated Web Servers”. Proc. of the Workshop
on Internet Server Performance, 1998.

[Yoshikawa97] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Ander-
son, and D. Culler.“Using Smart Clients to Build Scalable Services”.
Proc. of USENIX’97, 1997.

[Zhou93] Zhou, S., Wang, J., Zheng, X., and Delisle, P.“Utopia: A load
Sharing Facility for Large, Heterogeneous Distributed Computer Sys-
tems.” Software - Practice and Experience 23(12) December, 1305-
1336 (1993).


